

Г

X-CON BRAND

CONDUCTIVE POLYMER ALUMINUM SOLID CAPACITORS

PRODUCT SPECIFICATION 規格書

CUSTOMER: (客戶): 志盛	DATE: 語翔 (日期):2017-05-11
CATEGORY (品名)	: CONDUCTIVE POLYMER ALUMINUM SOLID CAPACITORS
DESCRIPTION (型号)	: ULR 16V270uF (φ6.3X8)
VERSION (版本)	: 01
Customer P/N	: /
SUPPLIER	: /

٦

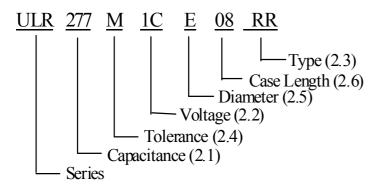
SUPPL	SUPPLIER			OMER
PREPARED (拟定)	CHECKED (审核)		APPROVAL (批准)	SIGNATURE (签名)
李婷	王国华			

SOLID POLYMER CAPACITOR SPECIFICATION ULR SERIES

		SPECI	FICATIO	ON	ALTERNATION HISTO		פחפר
		ULR					
Rev.	Date	Mark	Page	Contents	Purpose	Design	Cnfm

Issued-date: 2017-04-10	Name	Specification Sheet – ULR			
Version	01		Page	1	
STANDARD MANUAL					

	Sheet
Application	3
Part Number System	3
Construction	4
Characteristics	5~11
.1 Rated voltage & Surge voltage	
2 Capacitance (Tolerance)	
3 Leakage current	
4 Tangent of loss angle.5 ESR	
6 Temperature characteristic	
7 Load life test	
8 Surge test	
.9 Damp heat test	
.10 Maximum permissible ripple current	
11 Rapid change of temperature	
12 Lead strength	
13 Resistance to vibration	
14 Solderability 15 Pagistance to coldering heat	
15 Resistance to soldering heat Product Marking	12
Product Dimensions, Impedance & Maximum Permissible Ripple	
Application Guideline	16~1
1 Circuit design	10,-1
2 Voltage	
3 Sudden charge and discharge restricted	
4 Ripple current	
5 Leakage current	
6 Failure rate	
7 Capacitor insulation	
8 Precautions for using capacitors	. –
Mounting Precautions	17
List of "Environment-related Substances to be Controlled ('Controlled Substances to be Controlled Substances to be	ances')" 18


Issued-date: 2017-04-10	Name	Specification Sheet – ULR			
Version	01		Page	2	
STANDARD MANUAL					

X-CON

1. Application

This specification applies to conductive polymer aluminum solid capacitors used in electronic equipment.

2. Part Number System

2.1 Capacitance code

Code	277
Capacitance (µF)	270

2.2 <u>Rated voltage code</u>

Code	1C
Voltage (W.V.)	16

2.3 <u>Type</u>

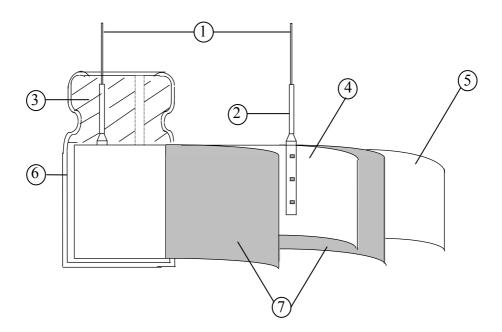
Code	RR	
Туре	BULK	

2.4 <u>Capacitance tolerance</u> "M" stands for $-20\% \sim +20\%$

2.5 <u>Diameter</u>

Code	Е
Diameter	6.3

2.6 <u>Case length</u> "08"=8mm


Issued-date: 2017-04-10	Name	Specification Sheet – ULR			
Version	01		Page	3	
STANDARD MANUAL					

SOLID POLYMER CAPACITOR SPECIFICATION ULR SERIES

X-CON

3.Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be formed and carbonized, impregnated with polymer and polymerized, then will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber.

No	Component	Material
1	Lead Line	Tinned Copper Line or CP Line(Pb Free)
2	Terminal	Aluminum
3	Sealing Material	Rubber
4	Al-Foil (+)	Aluminum
5	Al-Foil (-)	Aluminum
6	Case	Aluminum
7	Electrolyte paper	Manila Hemp

Issued-date: 2017-04-10	Name	Specification Sheet – ULR					
Version	01		Page	4			
STANDARD MANUAL							

X-CON

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests is as follows:

Ambient temperature: 15°C to 35°CRelative humidity: 45% to75%Air Pressure: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:Ambient temperature: $20^{\circ}C \pm 2^{\circ}C$ Relative humidity: 60% to 70%Air Pressure: 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage is -55°C to 105°C.

Issued-date: 2017-04-10	Name	Specification Sheet – ULR					
Version	01		Page	5			
STANDARD MANUAL							

SOLID POLYMER CAPACITOR SPECIFICATION ULR SERIES

X-CON

٦

	ITEM	PERFORMANCE				
4.1	Rated voltage (WV) Surge voltage (SV)	WV (V.DC) 16 SV (V.DC) 18.4				
4.2	Nominal capacitance (Tolerance)	<condition>Measuring Frequency: 120Hz\pm12HzMeasuring Voltage: Not more than 0.5VrmsMeasuring Temperature: $20\pm 2^{\circ}C$<criteria>Shall be within the specified capacitance tolerance.</criteria></condition>				
4.3	Leakage current	<condition></condition> After DC Voltage is applied to capacitors through the series protective resistor (1k $\Omega \pm 10 \Omega$) so that terminal voltage may reach the rated voltage .The leakage current when measured after 2 minutes shall not exceed the values of the following equation. In case leakage current value exceed the value shown in Table 3, remeasure after voltage treatment that applies the rated voltage shown in 4.1 for 120minutes at 105 °C <criteria></criteria> See Table 3				
4.4	tan δ	<condition> See 4.2, for measuring frequency, voltage and temperature.<criteria>Working voltage (v)16 16 $\tan \delta$ (max.)</criteria></condition>				
4.5	ESR	$<$ Condition>Measuring frequency : 100kHz to 300kHz; Measuring temperature:20 \pm 2°C Measuring point : 1mm max from the surface of a sealing resin on the lead wire. $<$ Criteria> (20°C)Less than the initial limit(See Table 3).				

Issued-date: 2017-04-10	Name	Specification Sheet – ULR					
Version	01		Page	6			
STANDARD MANUAL							

SOLID POLYMER CAPACITOR SPECIFICATION ULR SERIES

		STEP	Temperature(°C)	Item	Characteristics
		1	20±2	Measure: Capacitance tanδ Impedance	
		2	-55+3	Z-55°C / 20°C	≤1.25
	Temperature	3	Keep at 15 to 35°C for 15 minutes or more		
4.6	characteristic	4	105 ± 2	Z105°C / 20°C	≤1.25
				∆ C/C 20°C	Within $\pm 5\%$ of step1
		5	20 ± 2	tanð	Less than or equal to the value of item 4.4
		The C voltag	lition> apacitor is stored at a ten e for 2000 +48/0 hours .7 eria>		
		The C	apacitor is stored at a tem e for 2000 +48/0 hours .7 eria>		
		The C voltag <crit< b=""> Item</crit<>	apacitor is stored at a ten e for 2000 +48/0 hours .7 eria> Perf	The result should meet	the following table:
		The C voltag <crit< b=""> Item</crit<>	apacitor is stored at a ten e for 2000 +48/0 hours .7 eria> Perf acitance Change With	The result should meet formance $\frac{1}{20\%}$ of initial c $\frac{1}{5}$ than or equal to 1.5	the following table:
I.7	Load life	The C voltag < Crit Item Capa tan δ ESR	apacitor is stored at a ten e for 2000 +48/0 hours . eria> Perf acitance Change With Less item Less item	The result should meet ormance $\frac{1}{100} \pm 20\%$ of initial c $\frac{1}{100} \pm 20\%$ of initial	the following table: apacitance times of the value of times of the value of
ŀ.7		The C voltag < Crit Item Capa tan δ ESR	apacitor is stored at a ten e for 2000 +48/0 hours .T eria> Perf acitance Change With Less item age current Less	The result should meet formance $\frac{1}{20\%}$ of initial c $\frac{1}{3}$ than or equal to 1.5 $\frac{4.4}{3}$ than or equal to 1.5 $\frac{4.5}{3}$ than or equal to the v	the following table: apacitance times of the value of times of the value of alue of item 4.3
4.7	life	The C voltag < Crit Item Capa tan δ ESR	apacitor is stored at a ten e for 2000 +48/0 hours .T eria> Perf acitance Change With Less item age current Less	The result should meet ormance $\frac{1}{100} \pm 20\%$ of initial c $\frac{1}{100} \pm 20\%$ of initial	the following table: apacitance times of the value of times of the value of alue of item 4.3

Issued-date: 2017-04-10	Name	Specification Sheet – ULR					
Version	01		Page	7			
STANDARD MANUAL							

SOLID POLYMER CAPACITOR SPECIFICATION ULR SERIES

4.8	Surge test	seconds in every 5 minutes the capacitors shall be left u <criteria></criteria> Item Capacitance Change $\tan \delta$ ESR Leakage current	If the surge voltage through $1k\Omega$ resistor in series for 30 ± 5 30s at $15\sim 35^{\circ}$. Procedure shall be repeated 1000 times. Then under normal humidity for 1-2hours before measurement. Performance Within $\pm 20\%$ of initial capacitance Less than or equal to 1.5 times of the value of item 4.4 Less than or equal to 1.5 times of the value of item 4.5 Less than or equal to the value of item 4.3 mulates over voltage at abnormal situation, and not be obtage is always applied.
4.9	Damp heat test	-	posed for 1000 ± 48 hours in an atmosphere of $90 \sim 95\%$ RH at tric change shall meet the following requirement. Performance Within $\pm 20\%$ of initial capacitance Less than or equal to 1.5 times of the value of item 4.4 Less than or equal to 1.5 times of the value of item 4.5 Less than or equal to the value of item 4.3 Notable changes shall not be found.

Issued-date: 2017-04-10	Name	Specification Sheet – ULR					
Version	01		Page	8			
STANDARD MANUAL							

SOLID POLYMER CAPACITOR SPECIFICATION ULR SERIES

4.10	Maximum permissible (ripple current)	<condition> The maximum perr At 100kHz and car Table 3 The combined valu rated voltage and s Frequency Multipli Frequency Coefficient</condition>	a be applied at e of D.C volta hall not revers	maximum oper ge and the peak	rating temperatur	e see
4.11	Rapid change of temperature	Applied voltage: wit Cycle number: 5 cyc Test diagram: Fig.1 Performance: The ca Item Capacitance chang tan δ Leakage current	apacitors shall Performan e Within ± Less than	meet the follow ice 10% of initial or equal to valu or equal to the	Room $30 \pm 3 \min$ n or less de	

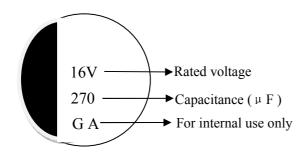
Issued-date: 2017-04-10	Name	Specification Sheet – ULR					
Version	01		Page	9			
STANDARD MANUAL							

SOLID POLYMER CAPACITOR SPECIFICATION ULR SERIES

	•	1			_
		a) Lead pull strength	1. 1. 1		
				terminal in the axial direction and acting	
		in a direction away from the	-		
		Lead wire diameter	Load force (N)		
		0.4 <d td="" ≤0.5<=""><td></td><td>5.0</td><td></td></d>		5.0	
		$0.5 < d \le 0.8$		10	
		b) Lead bending			
				position and the weight specified in the	
				the capacitor is slowly rotated 90° to a	
4.12	Lead strength	for 2~3 seconds.	returned to a	vertical position thus completing bends	
		The additional bends are mad	le in the onn	osite direction	
		Lead wire diameter (~ ~	Load force (N)	
		$0.4 < d \le 0.5$		2.5	
		$0.5 < d \le 0.8$		5	
				t the following value after a) or b) test.	
		Item	Performance		
		Leakage current		Less than or equal to the value of item4.3 No cutting and slack of lead terminals	
		Outward Appearance	No cutting	and stack of lead terminals	
4.13	Resistance to vibration	Performance: Capacitance value s capacitance when the value is mea	ion 1.5mm) ours) he following l Fig2 shall not show		

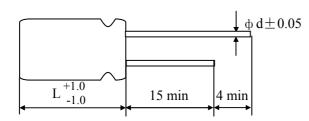
Issued-date: 2017-04-10	Name	Specification Sheet – ULR					
Version	01		Page	10			
STANDARD MANUAL							

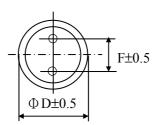
SOLID POLYMER CAPACITOR SPECIFICATION ULR SERIES


4.14	Solderability	The capacitor shall be tested under the following conditions:Solder: Sn-3Ag-0.5CuSoldering temperature: 245±3°CImmersing time: 3±0.5sImmersing depth: 1.5~ 2.0mm from the root.Flux: Approx .25% rosinPerformance: At least 95% of the dipped portion of the terminal shall be covered with new solder.
4.15	Resistance to soldering heat	A) Solder bath method Lead terminals of a capacitor are placed on the heat isolation board with thickness of 1.6±0.5mm. It will dip into the flux of isopropylachol solution of colophony. Then it will be immersed at the surface of the solder with the following condition: Solder $: Sn-3Ag-0.5Cu$ Soldering temperature $: 260 \pm 5^{\circ}C$ Immersing time $: 10\pm 1s$ Heat protector: t=1.6mm glass -epoxy board B) Soldering iron method Bit temperature $: 400 \pm 10^{\circ}C$ Application time $: 3\pm 1/-0 s$ Heat protector: t=1.6mm glass -epoxy board For both methods, after the capacitor at thermal stability, the following items shall be measured: Item Performance Capacitance Change Within $\pm 5\%$ of initial capacitance tan δ Less than or equal to the value of item 4.4 ESR Less than or equal to the value of item 4.3 (after voltage treatment) Appearance Notable changes shall not be found.

Issued-date: 2017-04-10	Name	Specification Sheet – ULR				
Version	01		Page	11		
STANDARD MANUAL						

X-CON


5. Product Marking


Marking Sample:

	G A												
,	Table 1					1	1						
	Code	С	D	Е	G								
	Year	2013	2014	2015	201	7	— Ma	anufact	ured we	eek: see	Table	2	
,	Table 2						– Manu	facture	d year:	see Tab	le 1		
	Week	1	2	3	4	5	6	7	8	9	10	11	
	Code	А	В	С	D	Е	F	G	Н	Ι	J	K	
	Week	12	13	14	15	16	17	18	19	20	21	22	
	Code	L	М	N	0	Р	Q	R	S	Т	U	V	
	Week	23	24	25	26	27	28	29	30	31	32	33	
	Code	W	Х	Y	Ζ	A	B	<u>C</u>	D	E	F	G	
	Week	34	35	36	37	38	39	40	41	42	43	44	
	Code	H	Ι	<u>J</u>	<u>K</u>	L	M	N	<u>0</u>	P	Q	<u>R</u>	
	Week	45	46	47	48	49	50	51	52]			
	Code	<u>S</u>	T	U	V	W	X	Y	<u>Z</u>				
										•			
Issued-	date: 2017-	-04-10	N	lame	Spec	ificatio	on She	et – Ul	LR				
	Version		0	1	-						Pa	ge 12	2
					100								

6. Product Dimensions, Impedance & Maximum Permissible Ripple Current Unit: mm

φD	6.3
L	8
F	2.5
φd	0.6

Table 3

Working Voltage (V)	Capacitance (µF)	Dimension (D×L, mm)	Maximum permissible ripple current at 105°C 100kHz (mA rms)	ESR at 25 °C100kHz to300kHz (m Ω)	Leakage current (µA) 2min
16	270	6.3X8	2000	20	864

Issued-date: 2017-04-10	Name	Specification Sheet – ULR				
Version	01		Page	13		
STANDARD MANUAL						

8.Application Guideline:

X-CON Solid Aluminum Electrolytic Capacitor should be used compliance with the following guidelines

8-1Circuit design

Prohibited Circuits for use

Do not use the capacitors with the following circuits.

1) Time constant circuits

- 2) Coupling circuits
- 3) Circuits which are greatly affected by leakage current

4) High impedance voltage retention circuits.

8-2. Voltage

1) Over voltage

The application of over-voltage and reverse voltage below can cause increases in leakage current and short circuits. Applied voltage, refers to the voltage value including the peak value of the transitional instantaneous voltage and the peak Value of ripple voltage, not just steady line voltage. Design your circuit so that the peak voltage does not exceed the stipulated voltage.

Over voltage exceeding the rated voltage may not be applied even for an instant as it may cause a short circuit.

2) Applied voltage

① Sum of the DC voltage value and the ripple voltage peak values must not exceed the rated voltage.

(2) When DC voltage is low, negative ripple voltage peak value must not become a reverse voltage that exceeds 10% of The rated voltage.

③ Use the X-CON within 20% of the rated voltage for applications which may cause the reverse voltage during the Transient phenomena when the power is tunid off or the source is switched.

8-3 Sudden charge and discharge restricted

Sudden charge and discharge may result in short circuit's large leakage current. Therefore, a protection circuits are recommended to design in when on of the following condition is expected.

1) The rush current exceeds 10A

2) The rush current exceeds 10 times of allowable ripple current of X-CON.

A protection resistor (1K Ω) must be inserted to the circuit during the charge and discharge when measuring the leakage Current.

8-4 Ripple current

Use the capacitors within the stipulated permitted ripple current. When excessive ripple current is applied to the capacitor, It causes increases in leakage current and short circuits due to self- heating. Even when using the capacitor under the Permissible ripple current, reverse voltage may occur if the DC bias voltage is low.

8-5 Leakage current

There is a risk of leakage current characteristics increasing even if the following use environments are within the stipulated range However, even if leakage current increases once, it has the characteristic that leakage current becomes small in most cases after voltage is applied due to its self-correction mechanism.

8-6 Failure rate

The main failure mode of X-CON is open mode primarily caused by electrostatic capacity drop at high temperature (i.e.wear out failure), besides random short circuit mode failures primarily caused by over voltage occurs as minor one. The time it takes to reach the failures mode can be extended by using the X-CON with reduced ambient temperature, ripple current and applied voltage.

8-7 Capacitor insulation

1) Insulation in the marking sleeve is not guaranteed. Be aware that the space between the case and the negative electrode Terminal is not insulated and has some resistance.

2) Be sure to completely separate the case, negative lead terminal, and positive lead terminal and PCB patterns with each other.

Issued-date: 2017-04-10	Name	Specification Sheet – ULR				
Version	01		Page	14		
STANDARD MANUAL						

8-8 Precautions for using capacitors

X-CON capacitors should not be used in the following environments.

1) Environments where the capacitor is subject to direct contact with salt water or oil can directly fall on it.

2) Environments where capacitors are exposed to direct sunlight.

3) High temperature (Avoid locating heat generating components around the X-CON and on the underside of the

PCB), or humid environments where condensation can form on the surface of the capacitor.

4) Environments where the capacitor is in contact with chemically active gases.

5) Acid or alkaline environments.

6) Environment subject to high-frequency induction.

7) Environment subject to excessive vibration and shock.

9. Mounting Precautions

Mounting phase	Things to note before mounting	Disposal
	1) Used X-CON capacitors	Not reused
	2) LC-increased X-CON capacitors	Apply them with rated voltage in series with $1 \text{K} \Omega$
	after long storage	resistance for 1 hour at the range between 60 and 70° C
Before mounting	3) X-CON capacitors dropped to the	Not reused
	floor	
	4) Precautions on polar, capacitance	Products without remarkable polar, capacitance and rated
Defore mounting	and rated voltage	voltage shouldn't be available
	5) Precautions on the pitch between	The products can be used only when said pitch is matched
	lead terminal and PCB	
	6) Precautions on the stress that lead	The products can be used for production only when lead
	terminal and body of X-CON	terminal and body are not subject stress.
	capacitors enduring in mounting	
	1) Soldering with a soldering iron	Both temperature and duration in mounting should meet
		the requirements of out-going SPEC; no stress should be
		allowed to occur in mounting; Don't let the tip of the
Mounting	2) Flow soldering	soldering iron touch the X-CON itself. X-CON capacitor body should be prohibited to submerge
Widulting	2) Flow soldering	in melted solder; both temperature and duration in
		mounting should meet the requirements of out-going
		SPEC; The rosin is not allowed to adhere to any where
		other than lead terminal.
	1) Precautions on mounting status	Do not tilt, bend twists X-CON; Do not allow other matter
		touch X-CON.
	2) Washing the PCB (available	Used immersion or ultrasonic waves to clean for a total of
	cleaning agent 1)high quality	less than 5 minutes and the temperature be less than 60°C;
After mounting	alcohol-based cleaning fluid such as	The conductivity, PH, specific gravity and water cleaning,
	st-100s, 750L,750M;2) Detergents	X-CON products should be dried with hot air (less than
	including substitute freon such as	the maximum operating temperature).
	AK-225AES and IPA)	

Issued-date: 2017-04-10	Name	Specification Sheet – ULR					
Version	01		Page	15			
STANDARD MANUAL							

10. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances					
	Cadmium and cadmium compounds					
Heavy metals	Lead and lead compounds					
	Mercury and mercury compounds					
	Hexavalent chromium compounds					
	Polychlorinated biphenyls (PCB)					
Chloinated	Polychlorinated naphthalenes (PCN)					
organic	Polychlorinated terphenyls (PCT)					
compounds	Short-chain chlorinated paraffins(SCCP)					
	Other chlorinated organic compounds					
Descripted	Polybrominated biphenyls (PBB)					
Brominated	Polybrominated diphenylethers(PBDE) (including					
organic	decabromodiphenyl ether[DecaBDE])					
compounds	Other brominated organic compounds					
Tributyltin comp	ounds(TBT)					
Triphenyltin con	npounds(TPT)					
Asbestos						
Specific azo com	pounds					
Formaldehyde						
Polyvinyl chloric	de (PVC) and PVC blevds					
Beryllium oxide						
Beryllium copp	er					
Specific phthalat	es (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)					
Hydrofluorocarb	on (HFC), Perfluorocarbon (PFC)					
Perfluorooctane	sulfonates (PFOS)					
Specific Benzotr	iazole					

Issued-date: 2017-04-10	Name	Specification Sheet – ULR					
Version	01		Page	16			
STANDARD MANUAL							